Synthesis, Reactions, and 31P NMR Analysis of (Diph0sphine)platinum Dithiolates

A. K. Fazlur-Rahman and J. G. Verkade'

Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 5001 1

Received April 23, I992

The reaction between (diphosphine)PtCl₂ (diphosphine = dppm, dppe, dppp, dppb, dcpe, depe) and bifunctional thiols (1,2-ethanedithiol, 1,3-propanedithiol, 1,2-benzenedithiol) in acetone or $CH₂Cl₂$ gives the corresponding dithiolate complexes **(1-18)** in the presence of a base. These thiolato complexes have been isolated as crystalline solids in **57-88%** yields and were characterized by IH, I3C, and 31P NMR spectroscopy. The 31P chemical shifts of these complexes are dependent on both the nature of the diphosphine and the chelating nature of the dithiolato **J. G. Verkade***

nd Ames Laboratory, Iow.

phine)PtCl₂ (diphosphine =

propanedithiol, 1,2-benzene

n the presence of a base. There characterized by ¹H, ¹³(

lent on both the nature of the presence of the correspon ment of Chemistry and Ames Laboratory, Iowa State 1

d April 23, 1992

action between (diphosphine)PtCl₂ (diphosphine = dppm, 0

1,2-ethanedithiol, 1,3-propanedithiol, 1,2-benzenedithiol)

1 57-88% yields and were chara

ligand. Treatment of (depe)Pt(SC6H4-04) **(15)** and the analogous dcpe complex **(18)** with 1 equiv of MeI, allyl chloride, or Me₃OBF₄ gave the corresponding sulfur-monoalkylated product. Reaction of Cr(nbd)(CO)₄ with

 $(\text{deep})\text{PtSC}_6\text{H}_4-\text{o-}\text{S}$ (15) gave $(\text{deep})\text{Pt}(SC_6\text{H}_4-\text{o-}\text{S})(Cr(CO)_4$ (22) in 64% yield.

Introduction

Although transition metal complexes containing thiolate ligands have been known since the last century,¹ interest in these compounds has undergone an increase in recent years. $2-5$ Metal thiolate complexes are involved in hydrodesulfurization⁶ and biological processes⁷ as electron-transfer mediators. Furthermore, metal thiolate complexes display novel structures^{3,8} and are capable of stabilizing unusual metal oxidation states? Alkanethiols are reported to form monolayers and thin films at metal surfaces,¹⁰ which is of relevance to nonlinear optical materials and information storage, for example.¹¹

Complexes containing both a diphosphine and a dithiolato ligand or two thiolato ligands are few.¹² Platinum(II) complexes containing two monodentate phosphine and two monodentate thiolates are obtained either by reaction of L₂PtCl₂ with RSH in the presence of a base^{12a} or by the action of $Pt(Ph_3P)_4$ with

- **(2)** Muller, A.; Diemann, E. In *Comprehensiue Coordination Chemistry;* Wilkinson, G., Ed.; Pergamon Press: Oxford, England, **1987;** Vol. **2, p 515.**
- **(3)** Dance, I. *G. Polyhedron* **1986,** *5,* **1037.**
- **(4)** Blower, P. **G.;** Dilworth, J. R. *Coord. Chem. Rev.* **1987,** *76,* **121.**
- **(5)** (a) Ashby, M. T. *Comments Inorg. Chem.* **1990,10,297.** (b) Dev, **S.;** Mizobe, Y.; Hidai, M. *Inorg. Chem.* **1990,29,4797.** (c) Sellmann, D.; Neuner, H.-P.; Moll, M.; Knoch, F. *Z. Naturforsch.* **1991,** *466,* **303.** (d) Treichel, P. M.; Schmidt, M. S.; Crane, R. A. *Inorg. Chem.* **1991,** *30,* **379** and references therein. (e) Bryant, M. A,; Pemberton, J. E. *J. Am. Chem. SOC.* **1991,** *113,* **3629.**
-
- (6) (a) Angelici, R. J. Acc. Chem. Res. 1988, 21, 387. (b) Gretz, E.; Vetter, W. M.; Stecher, H. A.; Sen, A. Isr. J. Chem. 1990, 30, 327.
(7) (a) Hawkes, T. R.; McLean, P. A.; Smith, B. E. Biochem. J. 1984, 217, (a) Hawke
- (8) (a) Gruff, E. S.; Koch, S. A. J. Am. Chem. Soc. 1990, 112, 1245. (b)
Roland, E.; Walborsky, E. C.; Dewan, J. C.; Schrock, R. R. J. Am.
Chem. Soc. 1985, 107, 5795. (c) Block, E.; Gernon, M.; Kang, H.; Ofori-Okai, G.; Zubieta, J. *Inorg. Chem.* **1991,** *30,* **1736. (9)** (a) Koch, *S.* A.; Millar, M. M. *J. Am. Chem. SOC.* **1983,105,3362.** (b)
- Millar, M. M.; OSullivan, T.; de Vries, N. *J. Am. Chem. SOC.* **1985, 107, 3714.** (c) Burns, R. P.; McAuliffe, C. A. *Ado. Inorg. Chem. Radiochem.* **1979, 22, 303** and references therein. (d) Burns, R. P.; McCullough, F. **P.;** McAuliffe, C. A. *Adu. Inorg. Chem. Radiochem.* **1980,** *23,* **21 1** and references therein.
- **(IO)** Whitesides, G. M. *Langmuir* **1988,** *4,* **546.**
- (11) Swalen, J. D.; Allara, D. L.; Andrade, J. D.; Chandross, E. A.; Garoff, S.; Israelachvili, J.; McCarthy, T. J.; Murray, R.; Pease, R. F.; Rabolt, J. F.; Wynne, K. J.; Yu, H. Langmuir 1987, 3, 932.
- (12) (a) Lai, R. D.; Shaver, A. *Inorg. Chem.* 1981, 20, 477. (b) Braterman, P. S.; Wilson, V. A.; Joshi, K. K. J. Organomet. Chem. 1971, 31, 123. (c) Povey, D. C.; Richards, R. L.; Shortman, C. Polyhedron 1986, 5, **369.** (d) Canich, J. A. M.: Cotton, F. A,; Dunbar, **K.** R.; Falvello, L. R. *Inorg. Chem.* **1988,** *27,* **804.** (e) Hunt, C. T.; Balch, A. L. *Inorg. Chem.* **1981,** *20,* **2267.**

dialkyl disulfides.¹³ Monomeric complexes of the type $[L_2Pt (SR)_2$] (L = PPh₃, PMe₂Ph, Ph₂PMe) have been extensively studied in the context of cis-trans isomerization.^{12a,14} However these compounds can form bridged dimeric units as well as complex polymers¹⁵ which are difficult to purify and characterize. Purified $[Pt(L₂)(SR)₂]$ complexes, when fused in vacuo, yield the dimer $L(RS)Pt(\mu-SR)₂Pt(SR)L$ from both cis and trans isomers.¹⁴ Complexes of two monodentate phosphine and bidentate thiols are somewhat more stable than those of monodentate analogues, lexes of the type $[L_2Pt-)$

the type $[L_2Pt-)$

bave been extensively

erization.^{12a,14} However

ic units as well as complex

and characterize. Purified

in vacuo, yield the dimer

cis and trans isomers.¹⁴

inne and bi

although examples are limited (e.g., L_2P tSCH₂CH₂S where L = PPh₃^{15,16}). We report here the synthesis of a series (1-18) of

chelated dithiolato complexes of platinum bound to chelated phosphines. The chelating properties of the bifunctional dithiolato ligand are expected not only to inhibit polymerization but also to increase the general stability of the complexes.

Discussion

The synthesis of (dithiolato)platinum(II) mononuclear complexes **1-18** was accomplished via reaction 1. All the reactions were complete within 2-6 h in the presence of a small amount of triethylamine. The reactivities of the dithiols are in the order

- **(13)** Zanella, R.; Ros, R.; Graziani, M. *Inorg. Chem.* **1973,** *f2,* **2736.**
- **(14)** Bird, P. H.;Siriwardane, U.; Lai, R. D.:Shaver, A. *Can.J. Chem.* **1982,** *60,* **2075.**
- **(15)** (a) Rauchfuss, T. B.; Shu, J. S.; Roundhill, D. M. *Inorg. Chem.* **1976,** *15,* **2096.** (b) Rauchfuss, T. **8.;** Roundhill, D. **M.** *J. Am. Chcm.* **SOC. 1975.97, 3386.** (c) Livingstone, *S.* E. **Q.** *Reu. Chem. SOC.* **1965, 386.** (d) Krebs, B.; Henkel, G. *Angew. Chem., Inr. Ed. Engl.* **1991,30,769- 788.**
- **(16)** (a) Schmidt, M.; Hoffman, G. G. *J. Orgonomet. Chem.* **1977,** *124, 5.* (b) *Z. Naturforsch., E Anorg. Chem., Org. Chem.* **1978,** *338,* **1334.** (c) Schmidt, M.; Hoffman, *G.* G.; Holler, R. *Inorg. Chim. Acta* **1979, 32,** L19.

⁽¹⁾ Klason, P. *Chem. Ber.* **1895, 28, 1493.**

n n **P P** = dppe, dppm, dppp, dppb, dew dcpe **S S** = 1,2-ethanedithiol, 1,3-propanedithiol, l,2-benzenedithiol

1,2-benzenedithiol (\sim 1 h) > 1,2-ethanedithiol (\sim 2-3 h) > 1,3propanedithiol *(4-6* h). The enhanced reactivity of the bifunctional thiols compared with the monodentate thiols reflects the effect of chelation. All the thiolato complexes were isolated as air-stable colorless crystalline solids in high yields (70-90%) with the exceptions of **1,** 2, and **7-9,** which gave light yellow solids because of decomposition during recrystallization. Although all of the complexes are air stable for days, prolonged exposure to moist air changes the colorless compounds to yellow or brown. Most of the complexes are high-melting solids (250-350 °C) and gave molecular ion peaks in their mass spectra. For the 1,2 ethanedithiolato and 1,3-propanedithiolato complexes, the loss of ethylene and propylene fragments was observed, and in the case of two of the o-phenylenedithiolato complexes **(6** and **9),** loss of benzyne was noted. We believe this might be due to the tendency of platinum to form an S-S-bonded structure,¹⁷ as shown in reaction 2. Prominent loss of fragment ions containing

$$
\underset{P}{P} \cdot \underset{S}{P} \cdot \underset{R}{S} \overset{S}{\underset{R}{\longleftarrow}} \overset{R}{\underset{R}{\longleftarrow}} \longrightarrow \begin{pmatrix} P \\ P \cdot P \cdot \underset{S}{\longleftarrow} S & + RCH=CHR & (2) \end{pmatrix}
$$

thioacetaldehyde and thiopropionaldehyde is also observed. In the case of alkyl-substituted phosphines (e.g., dcpe and depe.) loss of alkyls and alkanes instead of alkenes was observed from collapse of the dithiolate ring.

¹H and ¹³C NMR data for all the dithiolate complexes are givenin Table I, with appropriate assignments. Compounds **1-18** exhibit a single chemical shift in the $31P{1H}$ NMR spectrum with a pair of ¹⁹⁵Pt satellites (Table I), consistent with a squareplanar platinum(I1) geometry with two equivalent cis phosphine moieties.^{18,19} As has been observed previously for analogous diphosphine Pt(II) complexes, $20-22$ the 31P shift of the fivemembered chelate ring containing dppe, dcpe, and depe in Table I is less shielded than that of the four-membered ring containing dppm, the ranges being 45 to 68 and-36 to -42 ppm, respectively. The same chemical shift relationship is found between the sevenmembered rings in the dppb complexes (12-15 ppm) and the six-membered rings in the dppp complexes (-3) to -12 ppm) in Table I. Moreover, the shielding order of ring size $5 < 7 < 6 <$ 4 indicates that 3lP nuclei in odd ring sizes are less shielded than those in even ones and that the difference in $31P$ shielding between adjacent ring sizes becomes smaller with increasing ring size [i.e., $\delta({}^{31}P(5)) - \delta({}^{31}P(4)) > \delta({}^{31}P(7)) - \delta({}^{31}P(6))$. This ordering is also observed in the $\delta^{(31)}P$) values for the free phosphines (Table 11). A similar relationship of 31P chemical shifts with ring sizes was noted recently in $Cl_2Pt[PhP(CH_2)_nPPh_2]$ $(n = 1-5).^{23}$ A smaller influence on $\delta({}^{31}P)$ arises from the chelate ring size of the dithiolato ligand. A comparison of the $\delta^{(31)}P$) values for the $-SCH_2CH_2S$ - and the $-SCH_2$)₃S- complexes for dppm, dppe,

- Dudis, D. *S.;* Facklcr, J. P., Jr. *Inorg. Chem.* **1982,** *21, 3577.*
- Pregosin, P. **S.;** Kunz, R. *W.* In *NMR Basic Principles and Progress;* Diehl, P., Fluck, **E.,** Kosefeld, **R. R., Eds.;** Springer-Verlag: Berlin, 1979; Vol. 16.
- "P NMR Spectroscopy in Stereochemical Analysis; Verkade, J. G., Quin,, L. D., **Eds.;** VCH Publishers: New York, 1986.
- (20) Merriwether, K. **S.;** Leto, J. **R.** *J. Am. Chem. SOC.* **1961,** *83,* 3182. Appleton, T. G.; Bennett, M. A.; Tomkins, I. B. *J.* Chem. *Soc., Dalton* (21)
- *Trans.* **1916,** 439. Hietkamp, **S.;** Stuffken, D. J.; Vrieze, *K. J. Orgonomet. Chem.* **1979,** *169,* 107.
- Lindner, **E.;** Fawzi, **R.;** Mayer, H. A.; Eichele, K.; Hiller, W. (23) *Organometallics* **1992,** *11,* 1033.

dppp, and dppb, for example, reveals differences of 7.3, 1.6,9.1, and 2.2 ppm, respectively, with larger differences observed for the even-membered chelate rings provided by the diphosphines dppm and dppp. Except for the case of the dppb complexes of $-SCH_2CH_2S$ - and $-SCH_2$)₃S⁻, δ (³¹P) moves to higher field with increasing size of the dithiolato chelate ring. For each chelating diphosphine, the value of ${}^{1}J_{\text{PlP}}$ decreases in the order o -S₂C₆H₄²- $>$ -SCH₂CH₂S⁻ $>$ -S(CH₂)₃S⁻, reflecting the greater electronwithdrawing power of $o-S_2C_6H_4^{2-}$ over $SCH_2CH_2S^-$. The decrease in this coupling from $\text{SCH}_2\text{CH}_2\text{S}$ ⁻ to $\text{S(CH}_2)_3\text{S}$ ⁻ may be associated with a greater inductive effect of the latter ligand, which decreases the positive charge on the platinum, thereby reducing the contribution of the Fermi contact term.

 I_{PrP} values for the chelating dithiolates are in the order 1,2benzenedithiolato > 1,2-ethanedithiolato > 1,3-propanedithiolato (see Table I). This also reflects the ring strain contribution as well as electron-withdrawing effect. Garrou.²⁴ has given a detailed account of the ring contribution (ΔR) to the coordination chemical shift of phosphorus for a wide variety of chelated phosphines bound to transition metals. In Table I1 it is seen that the coordination chemical shifts are positive for each of the diphosphine ligands used except dppm. No consistent trends for the 3lP chemical shifts as a function of dithiolate ligand is seen for the set of diphosphine ligands herein examined.

Reaction of Complexes 15 and 18. The reaction **of** complex **18** with 1 equiv of trimethyloxonium tetrafluoroborate proceeds smoothly at room temperature to give a monoalkylated product **19(BF₄), which was isolated and characterized by ¹H and ¹³C**

NMR spectroscopy. The proton NMR spectrum of cation **19** shows four one-proton multiplets at δ 7.69, 7.62, 7.24, and 7.08 due to benzene ring protons. The methyl group bound to the sulfur atom appears as a singlet at δ 2.84. ¹³C NMR data for cation **19** are also consistent with the monoalkylated product. The reaction of 1 equiv of allyl chloride with **18** in an NMR tube initially gives a monoalkylated cation 20 analogous to **19.** Reaction with a further equivalent of allyl chloride resulted in the isolation of a complex mixture which could not be identified. Reaction of **15** with 1 equiv of Me1 also gave initially a monoalkylated product 21(I) which was isolated as a yellow solid. Complex 15 reacts with $(nbd)Cr(CO)₄$ at 80 °C in toluene to give the heterodinuclear complex 22. Mass spectroscopy shows the sequential loss of CO fragments and also the prominent loss of benzyne from the parent ion. The infrared spectrum of compound 22 shows ν (CO) frequencies at 2023, 1942, 1918, and 1904 cm⁻¹. The lowering of the carbonyl stretching frequencies of the tetracarbonyl moiety suggests that the diolefin of the starting chromium complex has been displaced by the dithiolate complex. This lowering of carbonyl frequency of 22 compared to that of (nbd)Cr(CO)₄²⁵ can be attributed to the stronger σ -donor (and/ or weaker π -acceptor) character of the sulfur atom compared with diolefins.26

Experimental Section

All experiments were carried out under a nitrogen atmosphere. Thiols were obtained from Aldrich Chemicals and were **used** without further purification. Phosphines were purchased from Strem Chemicals. The

- (24) Garrou, P. E. *Chem.* Reu. **1981,** *81.* 229. (25) Bennett, M. A.; Pratt, L.; Wilkinson, G. *J. Chem. SOC.* A **1961,** 2037.
- (26) Abel, E. W.;Crow, J. P.; Illingworth,S. M.J. *Chem. S0c.A* **1969,** 1631.

Table I. ¹H, ¹³C, and ³¹P NMR Data for Thiolato Complexes 1-18^a

	¹ H NMR		¹³ C NMR		³¹ P NMR
complex ⁵	phosphines	thiolato	phosphine	thiolato	phosphine
(dppm)PtSCH ₂ CH ₂ S 1	4.32 (m, 2H) $PCH2$ 7.25-7.40(m) C_6H_5 7.80(m)	1.79 (m, 4H) $SCH2$	38.14 (t) $PCH2$ 129.01 131.47 C_6H_5 132.86	37.67 SCH ₂	-47.74 $U_{\text{PrP}} = 2325 \text{ Hz}$
$(dppm)PtS(CH2)3S$ 2	4.25 (m, 2H) $PCH2$ 7.28-7.39(m, 8H) C_6H_5 7.85 (m, 2H)	2.32 (m, 4H) $SCH2$ 2.93 (m, 2H) $SCH2$	38.18 (t) $PCH2$ 128.93 131.45 C_6H_5 132.95)	36.80 SCH_2 33.69 $SCH2CH2$	-50.40 $J_{\text{P1P}} = 2315 \text{ Hz}$
$(dppm)PtSC6H4-o-S$ 3	4.63 (m, 2H) $PCH2$ $7.28 - 7.38$ (m, 8H) C_6H_5 7.78 (m, 2H)	7.43 (m, 2H) $S_2C_6H_4$ 6.79 (m, 2H) \int	38.37 (t) PCH ₂ 129.18 132.04 C_6H_5 133.23	122.37 $130.37\,{\rm S}_2C_6H_4$ 136.21	-36.57 J_{Pr} = 2370 Hz
(dppe)PtSCH ₂ CH ₂ S 4	2.70 (m, 4H) $PCH2$ 7.26 7.44 C_6H_5 7.80	2.40 (m, 4H) $SCH2$	31.65 (t) $PCH2$ U_{PC} = 9.7 Hz 128.72(t) 131.22 (d) C_6H_5 135.45(t)	38.35 SCH ₂	$+46.4$ $J_{\text{P1P}} = 2746 \text{ Hz}$
$(dppe)\dot{P}$ tS $(CH_2)_3\dot{S}$ 5	2.71 (m, 4H) $PCH2$ 7.29 (m)) 7.42 (m) C_6H_5 7.81(m)	2.35 (m, 2H) SCH_2CH_2 2.40 (m, 4H) $SCH2$	31.96 (t) $PCH2$ 128.66(t) 131.22 (d) C_6H_5 135.47(t)	23.80 $SCH2CH2$ 38.27 SCH ₂	$+44.80$ $J_{\text{P1P}} = 2732 \text{ Hz}$
$(dppe)PtSC6H4-o-S$ 6	2.52 (t, 4H) $PCH2$ 7.49) 7.76 C_6H_5 7.80J	7.02 (m, 2H) SC ₆ H ₄ S 7.31 (m, 2H) SC ₆ H ₄ S	29.43 (m) PCH ₂ 128.53 (m) 130.49 (m) $\{C_6H_5$ 133.20 (m)	121.31 131.84 SC ₆ H ₄ S 137.31	$+43.90$ $J_{\text{P1P}} = 2775 \text{ Hz}$
$(dppe)$ PtSCH ₂ CH ₂ S 7	2.14 (m, 2H) PCH_2CH_2 2.68 (m, 4H) $PCH2$ 7.49–7.76 (m) C_6H_5 7.81(m)	2.79 (m, 4H) SCH ₂	25.39 (m) PCH_2CH_2 29.53 (m) PCH_2CH_2 128.21 132.03 C_6H_5 133.39)	32.05 (m, 4H) $SCH2$	-3.57 $J_{\rm PP}$ = 2664 Hz
$(dppp)\dot{P}$ tS(CH ₂) ₃ S 8	2.29 (m, 2H) PCH_2CH_2 2.83 (m, 4H) $PCH2$ 7.27 (m) 7.39 (m) C_6H_5 7.57 (m)	2.10 (m, 2H) SCH_2CH_2 2.73 (m, 4H) SCH ₂	25.67 (m) $PCH2$ 29.34 (m) PCH_2CH_2 127.69 128.48 C_6H_5 130.93 133.45	19.40 (m) SCH_2CH_2 29.44 (m) $SCH2$	-12.69 $U_{\text{Pr}} = 2647 \text{ Hz}$
$(dppp)$ PtSC ₆ H ₄ - o -S 9	2.27 (m, 2H) PCH_2CH_2 2.82 (m, 4H) PCH ₂ 7.49–7.64 (m) C_6H_5	7.14 (m, 2H) $S_2C_6H_4$ $7.37 \; (m, 2H)$	25.92 (m) $PCH2$ 29.61 (m) PCH ₂ CH ₂ 128.32) 130.87 C_6H_5 133.51	122.07) 130.27 S ₂ C ₆ H ₄ 136.87	-8.95 $J_{\rm PrP} = 2678$ Hz
$(dppb)PtS(CH2)2S$ 10	1.95 (m, 4H) PCH ₂ 2.67 (m, 4H) PCH_2CH_2 7.27 (m)) 7.42 (m) C_6H_5 7.62(m)	2.55 (m, 4H) SCH ₂	28.42 (m) PCH ₂ 23.98 (m) PCH_2CH_2 127.90) 130.51 _c H ₅ 133.58	34.60 SCH ₂	12.91 $J_{\text{Pr}} = 2764 \text{ Hz}$
$(dppb)PtS(CH2)3S$ 11	1.86 (m, 4H) PCH_2CH_2 3.01 (m, 4H) $PCH2$ 7.28 (m) 7.39 (m) C_6H_5 7.67(m)	1.91 (m, 2H) $SCH2$ 2.54 (m, 4H) SCH_2CH_2	28.50 (m) $PCH2$ 23.91 (m) $PCH2$	32.32 (m) SCH_2CH_2 34.80 (m) $SCH2$	15.08 $J_{\text{PtP}} = 2751 \text{ Hz}$
$(dppb)PtSC6H4 - o-S$ 12	2.03 (m, 4H) PCH_2CH_2 2.62 (m, 4H) $PCH2$ 7.34 (m) 7.44 (m) $\{C_6H_5$ 7.66(m)	6.68 (m, 2H) 7.30(m, 2H)	23.88 (t, $^2J_{PC}$ = 32 Hz) PCH ₂ CH ₂ 28.93 (m) PCH_2CH_2 128.09 (m) 130.76 (m) C_6H_5 133.47 (m)	121.25 (m) $S_2C_6H_4$ 130.76 (m)	11.71 $J_{\text{P1P}} = 2768 \text{ Hz}$
$(depe)PtSCH2CH2S$ 13	1.15 (m, 12H) CH_2CH_3 1.93 (m, 8H) CH_2CH_3 2.59 (m, 4H) PCH ₂	2.82 (m, 4H) SCH ₂	9.09 (m) CH_2CH_3 19.93 (m) $CH2CH3$ 28.49 (m) $PCH2$	26.34 (m) $SCH2$	52.34 $U_{\rm PrP}$ = 2643 Hz
$(depe)$ PtS $(CH2)$ ₃ S 14	1.19 (m, 12H) CH_2CH_3 2.07 (m, 8H) $CH2CH3$ 2.61 (m, 4H) PCH ₂	1.53 (m, 4H) SCH ₂ 2.79 (m, 2H) SCH_2CH_2	8.93 (m) CH_2CH_3 19.93 (m) $CH2CH3$ 27.67 (m) $PCH2$	22.34 (m) SCH_2CH_2 26.54 (m) $SCH2$	46.76 $J_{\text{PtP}} = 2627 \text{ Hz}$
$(depe)PtSC6H4-o-S$ 15	1.22 (m, 12H) CH_2CH_3 1.85 (m, 8H) $CH2CH3$ 2.64 (m, 4H) $PCH2$	6.79 (m, 2H) $S_2C_6H_4$ 7.60 (m, 2H) $S_2C_6H_4$	8.79 (m) CH_2CH_3 20.95 (m) $CH2CH3$ 24.49 (m) $PCH2$	121.68 (m) $S_2C_6H_4$ 129.73 (m)	54.41 $J_{\text{PtP}} = 2699 \text{ Hz}$
$(dcpe)PtSCH2CH2S$ 16	$1.52-2.09$ (complex multiplet) $P-c-C_6H_{11}$ 2.63 (m, 4H) $PCH2$	2.32 (m, 4H) SCH ₂	$25.37 - 29.63$ (complex overlapping signals)	31.85 (m) $SCH2$	62.01 $U_{\rm PrP} = 2718$ Hz

^a Chemical shift values are in ppm. All NMR spectra were taken in CD₂Cl₂. ^b dppm = bis(diphenylphosphino)methane, dppe = 1,2**bis(diphenylphosphino)ethane,** dppp = **1,3-bis(diphenylphosphino)propane,** dppb = **1,4-bis(diphenyIphosphino)butane,** depe = 1,2-bis(diethyIphosphino)ethane, dcpe = **1,2-bis(dicyclohexylphosphino)ethane.**

Table 11. "P Coordination Chemical Shifts *AR"* of **(Phosphine)(dithiolato)platinum(II)** Complexes

complex	$\delta(P)$	$\delta(\mathbf{F})^b$	ΔR
(dppm)Pt	-47.74	-23.60	-24.14
$\left(\text{dppm})\text{Pt}\right.^{S}$	-50.40	-23.60	-26.80
$(dppm)Pt\begin{cases} S \\ g. \end{cases}$	-36.57	-23.60	-12.97
$(dppe)Pt\begin{cases}$	$+46.4$	-12.50	58.90
$(dppe)Pt\begin{cases}$	$+44.80$	-12.50	57.30
(dppe) Pt $\textstyle\bigwedge^{\textstyle\mathbf{S}}_{\mathbf{S}_-}$	$+43.90$	-12.50	56.40
(dppp)Pt	-3.57	-17.30	13.73
$(dppp)$ Pt $\left\langle S \right\rangle$	-12.69	-17.30	4.61
(dppp) Pt $\lt^{\text{S}^-}_{\text{S}-}$	-8.95	-17.30	8.35
	$+12.91$	-15.0	27.91
$(\mathbf{dppb})\mathbf{Pt}$	$+15.08$	-15.0	30.08
$\text{ (dppb)} \text{Pt} \text{ \text{ }^{\circ}$	$+11.71$	-15.0	26.71

 $A_R = {}^{31}P$ chemical shift difference between the dithiolato complex and free ligand ($\delta(F)$). *b* Reference 24. The ³¹P chemical shifts for (L-L)PtCl₂ are -64.30 (L-L = dppm), 45.3 (L-L = dppe), -5.6 (L-L = dppp), and 9.87 (L-L = dppb) ppm (Sanger, A. R. *J.* Chem. **SOC.,** Dalton Trans. 1977, 1971).

diphosphine complexes (dppm)PtCl₂, (dppe)PtCl₂, (dppp)PtCl₂, (dppb)- $PtCl₂$, (dcpe)PtCl₂, and (depe)PtCl₂ were prepared by the displacement of the benzonitrile ligand in $(PhCN)PtCl₂$ in $CH₂Cl₂$ solution.²⁷ The complex (nbd)Cr(CO)4 was prepared according to a literature procedure.25 The NMR spectra were recorded with a varian VXR 300 MHz spectrometer operating at 121.42 MHz for ³¹P, 300 MHz for ¹H, and 75.3 MHz for 13 C. 31 P chemical shifts were recorded relative to 85% H_3PO_4 (as external standard) with D_2O as the lock signal. Microanalyses were performed by Galbraith Laboratories, Ltd. Mass spectra were obtained using a Finnigan 1159143 instrument. Melting points were recorded on a Thomas-Hoover capillary melting point apparatus. CH₂- $Cl₂$ was distilled from CaH₂, and Et₂O and *n*-pentane were distilled from benzophenone ketyl. Acetone was distilled from anhydrous MgSO₄ and was stored over molecular sieves. MeOH was distilled from NaOMe.

Preparation of (dppm)PtSCH₂CH₂S (1). To a suspension of (dppm)-PtCl₂ (200 mg, 0.30 mmol) in dry CH₂Cl₂ (50 mL) was added 1,2ethanedithiol (0.05 mL, \sim 0.30 mmol) under nitrogen. The reaction mixture was heated to reflux for 3 h to give a light yellow solution. All volatile materials were evaporated, the residue was extracted with CH_{2} - $Cl₂$ (30 mL), and the extract was filtered through Celite. The filtrate was concentrated to ca. 10 mL and layered with *n*-pentane to obtain colorless crystals: yield 164 mg, 80%; mp 264-266 °C; MS m/e 672.2 (M⁺), 644 (M⁺ - C₂H₄), 638 (M⁺ - H₂S), 612 (M⁺ - C₂H₄S). **Preparation of (dppm)PtSCH₂CH₂S (1).** To a suspension of (dpPtCl₂ (200 mg, 0.30 mmol) in dry CH₂Cl₂ (50 mL) was addeterhanedithiol (0.05 mL, ~0.30 mmol) under nitrogen. The residem in the mixture was heated to

Preparation of (dppm)PtS($CH₂$ **)₃S (2).** To a suspension of (dppm)-PtC12 (180 **mg,** 0.27 mmol) in acetone (20 mL) was added 1,3 propanedithiol (0.05 mL, 30 mmol) under nitrogen. Triethylamine (2 drops) was added. The color of the solution changed to yellow with the evolution of fuming Et_3N-HCl . After 3 h the reaction solution was evaporated to dryness. The residue was washed with MeOH and ether. Recrystallization from CH_2Cl_2/h exane gave white crystals: yield 57.1%; mp 250-252 °C; MS m/e 686 (M⁺), 672 (M⁺ - CH₂), 644 (M⁺ - C₃H₆), coloriess crystals: yield 164 mg, 80%; inp 264-26

(M⁺), 644 (M⁺ - C₂H₄), 638 (M⁺ - H₂S), 612 (
 Preparation of (dppm)PtS(CH₂), S (2). To a s

PtCl₂ (180 mg, 0.27 mmol) in acetone (20 n

propanedithiol (

Preparation of (dppm)PtSC₆H₄- α **-S(3).** To a dichloromethane solution $(\sim 50$ mL) of (dppm)PtCl₂ (168 mg, 0.26 mmol) was added 1,2benzenedithiol(50 mg, 0.35 **mmol).** The reaction mixture was refluxed for 3 h. The solvent was evaporated under vacuum to give a creamcolored solid, which was washed with hexane (20 mL) and recrystallized from chloroform/ether to give colorless crystals: yield 142 **mg,** 76.5%; mp 348-350 **OC;** MS *m/e* 719 (M'). N-HCl. After 3 h the readents and the readents and H_2Cl_2 /hexane gave white cry
686 (M⁺), 672 (M⁺ - CH₂),
686 (M⁺), 672 (M⁺ - CH₂),
TSC₆H₄ - S (3). To a dichlo:
Cl₂ (168 mg, 0.26 mmol)
35 mmol). The

Preparation of (dppe)PtSCH₂CH₂S (4). To a suspension of (dppe)-PtCl₂(0.10g, 0.15 mmol) in CH₂Cl₂(10mL) were added 1,2-ethanedithiol $(0.03 \text{ mL}, \sim 33 \text{ mg}, 0.35 \text{ mmol})$ and Et_3N (2 drops). Fumes of Et_3N ·HCl were observed, and the reaction mixture was stirred for 3 h. The white precipitate which was formed upon adding n-hexane was isolated by decantation of the solvent and was washed with MeOH and ether. Recrystallization from $CHCl₃/n$ -hexane gave white crystals: yield 84 mg, 81%; mp 298-302 °C; MS m/e 685 (M⁺), 657 (M⁺ - C₂H₄), 626.1
(M⁺ - 2H₃S), 593 (M⁺ - C₂H₄S₂). mp 348–350 °C; MS m/e 719 (M+).
 Preparation of (dppe)PtSCH₂CH₂S (4). To *i*

PtCl₂ (0.10g, 0.15 mmol) in CH₂Cl₂ (10 mL) were

(0.03 mL, ~33 mg, 0.35 mmol) and Et₃N (2 drops

were observed, and the reaction

Preparation of (dppe)PtS(CH₂)₃S(5). The complex (dppe)PtCl₂(124) mg, 017 **mmol),** 1,3-propanedithiol (0.03 mL, 0.29 mmol) and triethylamine (2 drops) were stirred for 4 h in 50 mL of acetone. The volatile materials were removed by evaporation under vacuum, and the residue was extracted with dichloromethane (15 mL). The dichloromethane solution was filtered through Celite. To the filtrate was added n-hexane $(-5$ mL), resulting in the formation of a white precipitate, which was washed with MeOH and ether. Recrystallization of this material from $CHCl₃/n$ -hexane gave white crystals: yield 98 mg, 75%; mp 276-278 °C; MS m/e700.2 (M⁺), 686.2 (M⁺ – CH₂), 672 (M⁺ – C₂H₄), 658 (M⁺
- C₃H₆), 612 (M⁺ – C₃H₆S). **Preparation of (dppe) PtS(CH₂)**, 35 (5). The complemential materials were stirred for 4 h in 50 mL, 0.29 ylamine (2 drops) were stirred for 4 h in 50 mL of accountation under vacuation under vacuation and transferable by evaporation under vacuum
oromethane (15 mL). The
gh Celite. To the filtrate we formation of a white precepter.
Recrystallization of
inte crystals: yield 98 mg,
 $886.2 (M^+ - CH_2), 672 (M^+$
 $I_6S)$.
PtSC₆H₄- o **-S** (6).

Preparation of (dppe)PtSC₆H₄-o-S (6). The complex (dppe)PtCl₂ (138 mg, 0.20 **mmol)** and 1.2-benzenedithiol (50 mg, 0.35 **mmol)** were reacted in acetone, using the preceding procedure: yield 118 mg, 78%; mp 360 **OC;** MS *m/e* 734 (M'), 658 (M+ - C6H4).

Preparation of (dppp)PtSCH₂CH₂S (7). To a suspension of (dppp)-PtC12 (210 mg, 0.029 mmol) in 30 mL of acetone were added 1,2-ethanedithiol (0.04 mL, 0.06 **mmol)** and triethylamine (2 drops). The reaction mixture was stirred for 2 h. On addition of a small amount of pentane (15 mL), a white solid separated, which was filtered off, washed with pentane, and dried in vacuo. Although the product seemed stable in air, it decomposed **on** prolonged standing: yield 119 mg, 54%; mp 242-244 °C; MS m/e 700 (M⁺), 672 (M⁺ - C₂H₄), 640 (M⁺ - C₂H₄S).

^{(27) (}a) Church, M. J.; Mays, M. J. *J.* Inorg. *Nucl.* Chem. **1971, 33,** 253. **(b)** Booth, G.; Chatt, J. *J.* Chem. Sot. *A* **1966,** 634. **(c)** Westland, **A.** D. *J.* Chem. *SOC.* **1965,** 3060.

Preparation of $(dppp)PtS(CH_2)$ **₃S (8).** A suspension of $(dppp)PtCl_2$ n Dithiolates
PE(CH₂)₃S (8). A suspetone (50 mL) was treate
03 mL, 0.38 mmol) and ti (254 mg, 0.36 mmol) in acetone (50mL) was treatedat room temperature with 1,3-propanedithiol (0.03 mL, 0.38 mmol) and triethylamine (2 drops). The reaction mixture was stirred for 6 h. After the reduction of solvent under vacuum to ca 20 mL, n-pentane (15 mL) was added to obtain 8 as a cream-colored solid. This material was recrystallized from CH₂-C12/ether to obtain white microcrystals: yield 123 mg, 46%; 232-234 °C; MS m/e 714 (M⁺), 672 (M⁺ – C₃H₆), 607 (M⁺ – C₂H₄S₂). 1 Dithiolates

1 Dithiolates

1 $\mathbf{G}(\mathbf{CH}_2)$, \mathbf{S} (8). A suspen

tone (50 mL) was treated if

1 03 mL, 0.38 mmol) and trie

stirred for 6 h. After the

1. n-pentane (15 mL) wa

1 This material was recrys

1 23

1

Preparation of $(dppp)P$ **tSC₆H₄-** α S² (9). To a suspension of $(dppp)$ -PtCl₂ (172 mg, 0.24 mmol) in acetone (40 mL) was added 1,2benzenedithiol (50 mg, 0.35 mmol). The reaction mixture was heated to reflux for 30 min. The solution was allowed to cool and *n*-pentane added (20 mL) to give *9* as a white solid, which was recrystallized from $CH₂Cl₂/ether$ to obtain colorless crystals: yield 128 mg, 68%; mp 242-244 °C; MS m/e 748 (M⁺), 673 (M⁺ - C₆H₄). **Preparation of (dppb)PtsCH₂CH₂S (10). The complex (dppb)PtCl₂

Preparation of (dppb)PtsCH₂CH₂S (10).** The complex (dppb)PtCl₂
 Preparation of (dppb)PtSCH₂CH₂S (10). The complex (dppb)PtCl₂
 Preparat

(128 mg, 0.18 mmol) was reacted with 1,2-ethanedithiol (0.03 mL, \sim 0.35 mmol) and $Et₃N$ (2 drops) in acetone (20 mL) for 3 h at room temperature with stirring. After evaporation of the solvent under vacuum, the residue was extracted with CH₂Cl₂ and ether, leaving 10 as a white crystalline solid: yield 87 mg, 67%; MS m/e 715 (M⁺ - C₂H₄S), 687 (M⁺ - C₂H₄), 685 (M⁺ - C₂H₆), 653 (M⁺ - C₂H₅S). added (20 mL) to give 9 as a white solid, which we
CH₂Cl₂/ether to obtain colorless crystals: yield 1:
244 °C; MS m/e 748 (M⁺), 673 (M⁺ – C₆H₄).
Preparation of (dppb) PtSCH₂CH₂S (10). The
(128 mg, 0.18

Preparation of $(dppb)PtS(CH_2)sS(11)$ **. The complex** $(dppb)PtCl_2$ (160 mg, 0.23 mmol) was reacted with 1,3-propanedithiol(O.O3 mL) and Et₃N (2 drops) in acetone (50 mL) for 10 h. The solvent was removed under vacuum, and the residue was recrystallized from CH_2Cl_2 and hexane to give a white solid: yield 107 mg, 64%; MS m/e 729 (M⁺), 715 (M⁺ - CH₂), 687 (M⁺ - C₃H₆), 653 (M⁺ - C₃H₆S). mmol) and Et₃N (2 drops) in acetone (20 mL) for 3 h is
with stirring. After evaporation of the solvent under
was extracted with CH₂Cl₂ and ether, leaving 10 as
solid: yield 87 mg, 67%; MS m/e 715 (M⁺ - C₂H₄S)

Preparation of (dppb)PtSC₆H₄-o-S (12). The complex (dppb)PtCl₂ (180 mg, 0.25 mmol), 1,2-benzenedithiol (50 mg, 0.35 mmol), and $Et₃N$ (2 drops) were stirred in acetone (30 mL) for 1 h. After removal of the solvent under vacuum, the residue was recrystallized twice from CH_{2} - $Cl₂/n$ -hexane to give colorless crystals: yield 156 mg, 79%; MS m/e Anal. Calcd for C₃₄H₃₂P₂S₂Pt (found): C, 53.50 (52.93); H, 4.19 (4.19); P, 8.12 (8.10); S, 8.39 (8.27). 762.6 (M⁺), 734 (M⁺ - C₂H₄), 653 (M⁺ - C₆H₄S), 619 (M⁺ - C₆H₄S₂H₂). e (50 mL) for 10 h. The soldie was recrystallized from

d 107 mg, 64%; MS m/e 7.

(d) 107 mg, 64%; MS m/e 7.

(e), 653 (M^+ – C₃H₆S).

PtSC₆H₄- o -S (12). The cor-

benzenedithiol (50 mg, 0.3.

acetone (30 mL)

Preparation of (depe)PtSCH₂CH₂S (13). The complex (depe)PtCl₂ (216 mg, 0.45 mmol), 1,2-ethanedithiol (0.04 mL, 0.48 mmol), and $Et₃N$ (2 drops) were stirred in acetone (40 mL) for 6 h. The solvent was removed under vacuum, and the residue was recrystallized from CH₂- $Cl₂/Et₂O$ to give a white crystalline solid: yield 182 mg, 68%; mp 218-220 °C; MS m/e 495 (M⁺), 480 (M⁺ - CH₃), 466 (M⁺ - C₂H₅). prless crystals: yield 15
 H_4), 653 (M⁺-C₆H₄S), 6
 S_2 Pt (found): C, 53.50 (2.7).
 H_3 CH₂CH₂S (13). The
 H_2 CH₂CH₂S (13). The
 H_3 CH₂CH₂S (13). The

acetone (40 mL) for 6

and the residue was

Preparation of $(depe)PtS(CH₂)sS (14)$ **. The complex** $(depe)PtCl₂$ (200 mg, 0.41 mmol), 1,3-propanedithiol (0.06 mL, 0.7 mmol), and $Et₃N$ (2 drops) were stirred in $CH₂Cl₂$ (40 mL) overnight. Removal of the volatiles under vacuum gave a yellow solid, which ws recrystallized from CH2C12/n-hexane to give cream-colored crystals: yield 158 **mg,** 74%; mp 212-214 °C; MS m/e 509 (M⁺), 480 (M⁺ - C₂H₅), 494 (M⁺ - CH₃), 466 (M⁺ - C₃H₇). (2 drops) were stirred in acetone (40 mL) for 6 i
removed under vacuum, and the residue was recrys
 Cl_2/Et_2O to give a white crystalline solid: yield 182
220 °C; MS m/e 495 (M⁺), 480 (M⁺ – CH₃), 466
Preparation o

Preparation of (depe)PtSC₆H₄-o-S (15). The complex (depe)PtCl₂ (200 mg, 0.40 mmol), 1,2-benzenedithiol (60 mg, 0.42 mmol), and Et_3N (2 drops) were stirred in acetone (40 mL) for 4 h. After removal of the solvent under vacuum, the residue was dissolved in CH₂Cl₂, and the solution was layered with ether to give **15** as a white crystalline solid: yield 98 mg, 86%; mp 249–252 °C; MS *m/e* 543 (M⁺), 514 (M⁺ – C₂H₅). Anal. Calcd for C₁₆H₂₈P₂S₂Pt (found): C, 35.35 (36.10); H, 5.15 (5.34); P, 11.41 (11.38). $\frac{1}{10}$ ether to give 15 a
1. ether to give 15 a
522 °C; MS m/e 54
52 Pt (found): C, 35
PtSCH₂CH₂S (16).

Preparation of (dcpe)PtSCH₂CH₂S (16). The complex (dcpe)PtCl₂ (230 mg, 0.30 mmol) was reacted with 1,2-ethanedithiol(O.O3 mL, 0.35 mmol) in acetone (40 mL) in the presence of Et₃N (2 drops). After 8 h of stirring, all volatile materials were removed under vacuum. The residue was extracted with toluene (20 mL), and the extract was filtered through Celite. The filtrate was concentrated to \sim 5 mL and kept in the freezer for crystallization, resulting in the isolation of a cream-colored microcrystalline solid: yield 154 mg, 65% ; mp $262-264$ °C; MS m/e 711 F, 11.41 (11.38).
P, 11.41 (11.38).
P, 11.41 (11.38).
Preparation of (dcpe)PtSCH₂CH₂S (16). The
(230 mg, 0.30 mmol) was reacted with 1,2-ethaned
mmol) in acetone (40 mL) in the presence of Et₃;
h of stirring, all vo

Preparation of $(\text{dcpe})\text{PtS}(\text{CH}_2)$ **₃S** (17). The complex $(\text{dcpe})\text{PtCl}_2$ (200 mg, 0.29 mmol) was reacted in acetone (40 mL) with 1,3-

propanedithiol (40 mg, 0.37 mmol) in the presence of $Et₃N$ (2 drops). The reaction mixture was stirred for 12 h, and the solvent was removed under vacuum. The residual solid was extracted with CH_2Cl_2 (15 mL), and the extract was filtered through Celite. The filtrate was concentrated and layered with n-hexane to give white solid: yield 172 mg, 81%; mp 298-300 °C; MS m/e 725 (M⁺), 642 (M⁺ - C₆H₁₂).

Preparation of (dcpe)PtSC₆H₄-o-S (18). The complex (dcpe)PtCl₂ (250 mg, 0.36 mmol) was reacted with 1,2-benzenedithiol (60 mg, 42 **mmol)** and triethylamine (0.1 mL) in acetone (50 mL). The reaction mixture was stirred for 6 h. All the volatile materials were removed under vacuum, and the residue was extracted with CH₂Cl₂. Removal of $CH₂Cl₂$ gave a white solid, which was recrystallized from *n*-hexane/ CH₂Cl₂ to give colorless crystals: yield 214 mg, 78%; mp >360 °C; MS m/e 759 (M⁺), 677 (M⁺ – C₆H₁₀), 594, 512, sequential loss of cyclohexyl groups. Anal. Calcd for $C_{32}H_{52}P_{2}S_{2}Pt$ (found): C, 50.65 (50.66); H, 6.86 (7.15).

Reaction of 18 with Me30BF4 To Give lg(BF4). A 15-mL toluene solution of 18 (38 mg, 0.05 mmol) was reacted with Me₃OBF₄ (10 mg, 0.07 mmol) at -10 °C. The reaction mixture was warmed to room temperature and stirred for 15 min. All the volatile materials were removed under vacuum, the residue was extracted with $CH₂Cl₂$, and the extract was filtered through Celite. Removal of the solvent under vacuum gave 19(BF₄) as a yellow solid: yield 24 mg, 58%; mp 285-287 °C; ¹H NMR (CD₂Cl₂) δ 7.69 (m, 1H, C₆H₄), 7.62 (m, 1H, C₆H₄), 7.24 (m, lH, C6H4), 7.08 **(m,** lH, C6H4), 2.84 **(s,** 3H, CHI), 2.87-1.80 (complex multiplet overlapped with PCH₂ protons, 48H, C_6H_{11} , PCH₂); ¹³C NMR (CD₂Cl₂, 75.3 Hz) *δ* 148.02, 131.84, 130.70, 124.23 (C₆H₄S₂), 35.94, 35.58 (PCH₂), 30.16, 29.09, 28.75, 26.61 (C₆H₁₁), 25.56 (CH₃).

Reaction of **18 with AUyl Chloride To Form ZO(C1).** To an NMR tube containing complex 18 (35 mg, 0.05 mmol) was added CD₂Cl₂ (0.3 mL) by a syringe under N_2 . Allyl chloride (\sim 2 drops) was added to the solution at room temperature. The reaction mixture was allowed tostand at this temperature for **1** h. Measurements of the 'H and I3C NMR spectra at room temperature indicated the formation of monoalkylated product: ¹H NMR (CD₂Cl₂) δ 7.65 (m, 1H), 7.35 (m, 1H), 7.05 (m, IH), 6.77 **(m,** 1H) (C6H4), 4.30 (d, lH), 4.19 (m, lH), 3.79 (m, 1H) $(CH=CH₂ protons), 3.52 (t, 2H) (SCH₃), 3.23 (m, 4H) (PCH₂), 2.84-$ 1.32 (complex multiplet) (C_6H_{11} hydrogens); ¹³C NMR (CDCl₃, 75.3 Hz) δ 131.11, 129.45, 126.78, 121.53 (C₆H₄), 114, 103 (CH=CH₂), 36.03 (SCHz), 35.61,33.26 (PCHz), 29.50-25.16 (complex overlapping lines due to 24 carbons) (C_6H_{11}) .

Reaction of 15 with Me1 To Give 21(I). To a dichloromethane (20 mL) solution of **15** (150 mg, 0.27 mmol) was added Me1 (42 mg, 0.29 mmol) at room temperature. After 45 min of stirring, solvent was removed under vacuum and the residue was washed with n-pentane to obtain **21(I)** as a yellow solid: yield 142 mg, **75%;** 'H NMR (CD2C12, 300 MHz) *6* 7.62 **(m,** lH, C6H4), 7.25 (m, lH, C6H4), 7.04 (m, lH, C6H4), 6.78 (m, $1H, C_6H_4$, 2.83 (m, 3H, CH₃), 2.58–0.96 (complex multiplets overlapped with PCH₂ and PCH₂CH₃ groups); ¹³C NMR (CD₂Cl₂) δ 143.08, 132.35, 129.83, 128.54 ($S_2C_6H_4$), 24.35 (PCH₂), 23.04 (SCH₃), 21.24, 21.31, 21.12, 19.80 (CH₂), 9.03, 8.87 (CH₃).

Reaction of 15 with $(nbd)Cr(CO)₄$ **To Give 22.** To a 40-mL toluene

solution containing 124 mg of (depe) \dot{P} tSC₆H₄- o -S (0.23 mmol) was added (nbd)Cr(C0)4 (75 **mg,** 0.30 **mmol).** Following heating of the reaction mixture overnight at 80 $^{\circ}$ C and cooling to room temperature, it was filtered through Celite. The filtrate was concentrated under vacuum to ca. 10 mL and layered with n-pentane to give **22** as a yellow solid: yield 116 mg, 72%; MS m/e 678 (M⁺ - CO), 650 (M⁺ - 2CO), 630 (M⁺ - C_6H_4); IR (KBr) 2023, 1942, 1918, 1904 cm⁻¹ (ν (CO)); ³¹P NMR $(toluene-d_8) \delta 67.79$ $(^1J_{\rm PrP} = 2699)$.

Acknowledgment. Ames Laboratory is operated for the **US.** Department of Energy by Iowa State University under Contract No. 2-7405-ENG-82. This work was supported, in part, by the Assistant Secretary for Fossil Energy through the Pittsburgh Energy Technology Center. We thank the Johnson Mathey Metals Loan Program for a sample of PtCl₂. Partial support through DOE Grant No. DE-FG2288PC88923 is also acknowledged.